

 Navegação

 	
 índice

 	
 próximo |

 	YARetornoBoleto

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	
 próximo |

 	
 anterior |

 	YARetornoBoleto

Documentacao YA Retorno Boleto

Iniciando

	Bem vindo ao YA Retorno Boleto

	Instalação

O componente

	The Guzzle HTTP client
	Creating a Client

	Creating requests with a client

	Static clients

	Request options

	Sending requests

	Plugins and events

	Using Request objects
	HTTP request messages

	Creating requests with a client

	Query string parameters

	HTTP Message Headers

	Setting the body of a request

	Working with cookies

	Changing where a response is downloaded

	Custom cURL options

	Request options

	Working with errors

	Plugins and events

Eventos

	Plugin system overview

	Creating plugins

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	
 próximo |

 	
 anterior |

 	YARetornoBoleto

 	Documentacao YA Retorno Boleto

Bem vindo ao YA Retorno Boleto

O que é?

Yet Another Retorno Boleto é uma biblioteca em PHP para leitura de arquivos de retorno de títulos de cobrança
de bancos brasileiros.

Principais funcionalidades

	Parser de arquivos de retorno da FEBRABAN em uma unica interface.

	Fácil extensão para funcionar com qualquer arquivo de retorno não suportado.

use Umbrella\Ya\RetornoBoleto\ProcessFactory;
use Umbrella\Ya\RetornoBoleto\ProcessHandler;

// Utilizamos a factory para construir o objeto correto para um determinado arquivo de retorno
$cnab = ProcessFactory::getRetorno('arquivo-retorno.ret');

// Passamos o objeto contruido para o handler
$processor = new ProcessHandler($cnab);

// Processamos o arquivo. Isso retornará um objeto parseado com todas as propriedades do arquvio.
$retorno = $processor->processar();

License

Licensed using the MIT license [http://opensource.org/licenses/MIT].

The MIT License (MIT)

Copyright (c) 2014 Umbrella Tech

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	
 próximo |

 	
 anterior |

 	YARetornoBoleto

 	Documentacao YA Retorno Boleto

Instalação

Requisitos

	PHP 5.3.3+ compilado com a extensão cURL

	A versão atual do cURL 7.16.2+ compilado com OpenSSL e zlib

Instalando YA Retorno Boleto

Composer

A maneira recomendada de instalar YA Retorno Boleto é com o ‘Composer <http://getcomposer.org> `_. Composer é uma
ferramenta de gerenciamento de dependência para PHP que lhe permite declarar as dependências que o seu projeto precisa
e instala-los em seu projeto.

Install Composer
curl -sS https://getcomposer.org/installer | php

Adicionando YA Retorno Boleto como dependencia
php composer.phar require umbrella/retorno-boleto:~1.2

Após a instalação, é necessário carregar o autoloader do composer:

require 'vendor/autoload.php';

Você pode encontrar mais informações sobre como instalar o Composer, configurar o carregamento automático,
e outras boas práticas para a definição dependências em getcomposer.org <http://getcomposer.org> _.

Mantendo-se atualizado

Durante o desenvolvimento, você pode manter-se com as últimas alterações do branch master, definindo a versão
do YA Retorno Boleto para `` dev-master``.

{
 "require": {
 "umbrella/retorno-boleto": "dev-master"
 }
}

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	
 próximo |

 	
 anterior |

 	YARetornoBoleto

 	Documentacao YA Retorno Boleto

The Guzzle HTTP client

Guzzle gives PHP developers complete control over HTTP requests while utilizing HTTP/1.1 best practices. Guzzle’s HTTP
functionality is a robust framework built on top of the PHP libcurl bindings [http://www.php.net/curl].

The three main parts of the Guzzle HTTP client are:

	Clients
	Guzzle\Http\Client (creates and sends requests, associates a response with a request)

	Requests
	Guzzle\Http\Message\Request (requests with no body),
Guzzle\Http\Message\EntityEnclosingRequest (requests with a body)

	Responses
	Guzzle\Http\Message\Response

Creating a Client

Clients create requests, send requests, and set responses on a request object. When instantiating a client object,
you can pass an optional “base URL” and optional array of configuration options. A base URL is a
URI template that contains the URL of a remote server. When creating requests with a relative
URL, the base URL of a client will be merged into the request’s URL.

use Guzzle\Http\Client;

// Create a client and provide a base URL
$client = new Client('https://api.github.com');

$request = $client->get('/user');
$request->setAuth('user', 'pass');
echo $request->getUrl();
// >>> https://api.github.com/user

// You must send a request in order for the transfer to occur
$response = $request->send();

echo $response->getBody();
// >>> {"type":"User", ...

echo $response->getHeader('Content-Length');
// >>> 792

$data = $response->json();
echo $data['type'];
// >>> User

Base URLs

Notice that the URL provided to the client’s get() method is relative. Relative URLs will always merge into the
base URL of the client. There are a few rules that control how the URLs are merged.

Dica

Guzzle follows RFC 3986 [http://tools.ietf.org/html/rfc3986#section-5.2] when merging base URLs and
relative URLs.

In the above example, we passed /user to the get() method of the client. This is a relative URL, so it will
merge into the base URL of the client– resulting in the derived URL of https://api.github.com/users.

/user is a relative URL but uses an absolute path because it contains the leading slash. Absolute paths will
overwrite any existing path of the base URL. If an absolute path is provided (e.g. /path/to/something), then the
path specified in the base URL of the client will be replaced with the absolute path, and the query string provided
by the relative URL will replace the query string of the base URL.

Omitting the leading slash and using relative paths will add to the path of the base URL of the client. So using a
client base URL of https://api.twitter.com/v1.1 and creating a GET request with statuses/user_timeline.json
will result in a URL of https://api.twitter.com/v1.1/statuses/user_timeline.json. If a relative path and a query
string are provided, then the relative path will be appended to the base URL path, and the query string provided will
be merged into the query string of the base URL.

If an absolute URL is provided (e.g. http://httpbin.org/ip), then the request will completely use the absolute URL
as-is without merging in any of the URL parts specified in the base URL.

Configuration options

The second argument of the client’s constructor is an array of configuration data. This can include URI template data
or special options that alter the client’s behavior:

	request.options
	Associative array of Request options to apply to every
request created by the client.

	redirect.disable
	Disable HTTP redirects for every request created by the client.

	curl.options
	Associative array of cURL options to apply to every request created by the client.
if either the key or value of an entry in the array is a string, Guzzle will
attempt to find a matching defined cURL constant automatically (e.g.
“CURLOPT_PROXY” will be converted to the constant CURLOPT_PROXY).

	ssl.certificate_authority
	Set to true to use the Guzzle bundled SSL certificate bundle (this is used by
default, ‘system’ to use the bundle on your system, a string pointing to a file to
use a specific certificate file, a string pointing to a directory to use multiple
certificates, or false to disable SSL validation (not recommended).

When using Guzzle inside of a phar file, the bundled SSL certificate will be
extracted to your system’s temp folder, and each time a client is created an MD5
check will be performed to ensure the integrity of the certificate.

	command.params
	When using a Guzzle\Service\Client object, this is an associative array of
default options to set on each command created by the client.

Here’s an example showing how to set various configuration options, including default headers to send with each request,
default query string parameters to add to each request, a default auth scheme for each request, and a proxy to use for
each request. Values can be injected into the client’s base URL using variables from the configuration array.

use Guzzle\Http\Client;

$client = new Client('https://api.twitter.com/{version}', array(
 'version' => 'v1.1',
 'request.options' => array(
 'headers' => array('Foo' => 'Bar'),
 'query' => array('testing' => '123'),
 'auth' => array('username', 'password', 'Basic|Digest|NTLM|Any'),
 'proxy' => 'tcp://localhost:80'
)
));

Setting a custom User-Agent

The default Guzzle User-Agent header is Guzzle/<Guzzle_Version> curl/<curl_version> PHP/<PHP_VERSION>. You can
customize the User-Agent header of a client by calling the setUserAgent() method of a Client object.

// Completely override the default User-Agent
$client->setUserAgent('Test/123');

// Prepend a string to the default User-Agent
$client->setUserAgent('Test/123', true);

Creating requests with a client

A Client object exposes several methods used to create Request objects:

	Create a custom HTTP request: $client->createRequest($method, $uri, array $headers, $body, $options)

	Create a GET request: $client->get($uri, array $headers, $options)

	Create a HEAD request: $client->head($uri, array $headers, $options)

	Create a DELETE request: $client->delete($uri, array $headers, $body, $options)

	Create a POST request: $client->post($uri, array $headers, $postBody, $options)

	Create a PUT request: $client->put($uri, array $headers, $body, $options)

	Create a PATCH request: $client->patch($uri, array $headers, $body, $options)

use Guzzle\Http\Client;

$client = new Client('http://baseurl.com/api/v1');

// Create a GET request using Relative to base URL
// URL of the request: http://baseurl.com/api/v1/path?query=123&value=abc)
$request = $client->get('path?query=123&value=abc');
$response = $request->send();

// Create HEAD request using a relative URL with an absolute path
// URL of the request: http://baseurl.com/path?query=123&value=abc
$request = $client->head('/path?query=123&value=abc');
$response = $request->send();

// Create a DELETE request using an absolute URL
$request = $client->delete('http://www.example.com/path?query=123&value=abc');
$response = $request->send();

// Create a PUT request using the contents of a PHP stream as the body
// Specify custom HTTP headers
$request = $client->put('http://www.example.com/upload', array(
 'X-Header' => 'My Header'
), fopen('http://www.test.com/', 'r'));
$response = $request->send();

// Create a POST request and add the POST files manually
$request = $client->post('http://localhost:8983/solr/update')
 ->addPostFiles(array('file' => '/path/to/documents.xml'));
$response = $request->send();

// Check if a resource supports the DELETE method
$supportsDelete = $client->options('/path')->send()->isMethodAllowed('DELETE');
$response = $request->send();

Client objects create Request objects using a request factory (Guzzle\Http\Message\RequestFactoryInterface).
You can inject a custom request factory into the Client using $client->setRequestFactory(), but you can typically
rely on a Client’s default request factory.

Static clients

You can use Guzzle’s static client facade to more easily send simple HTTP requests.

// Mount the client so that you can access it at \Guzzle
Guzzle\Http\StaticClient::mount();
$response = Guzzle::get('http://guzzlephp.org');

Each request method of the static client (e.g. get(), post()`, ``put(), etc) accepts an associative array of request
options to apply to the request.

$response = Guzzle::post('http://test.com', array(
 'headers' => array('X-Foo' => 'Bar'),
 'body' => array('Test' => '123'),
 'timeout' => 10
));

Request options

Request options can be specified when creating a request or in the request.options parameter of a client. These
options can control various aspects of a request including: headers to send, query string data, where the response
should be downloaded, proxies, auth, etc.

headers

Associative array of headers to apply to the request. When specified in the $options argument of a client creational
method (e.g. get(), post(), etc), the headers in the $options array will overwrite headers specified in the
$headers array.

$request = $client->get($url, array(), array(
 'headers' => array('X-Foo' => 'Bar')
));

Headers can be specified on a client to add default headers to every request sent by a client.

$client = new Guzzle\Http\Client();

// Set a single header using path syntax
$client->setDefaultOption('headers/X-Foo', 'Bar');

// Set all headers
$client->setDefaultOption('headers', array('X-Foo' => 'Bar'));

Nota

In addition to setting request options when creating requests or using the setDefaultOption() method, any
default client request option can be set using a client’s config object:

$client->getConfig()->setPath('request.options/headers/X-Foo', 'Bar');

query

Associative array of query string parameters to the request. When specified in the $options argument of a client
creational method, the query string parameters in the $options array will overwrite query string parameters
specified in the $url.

$request = $client->get($url, array(), array(
 'query' => array('abc' => '123')
));

Query string parameters can be specified on a client to add default query string parameters to every request sent by a
client.

$client = new Guzzle\Http\Client();

// Set a single query string parameter using path syntax
$client->setDefaultOption('query/abc', '123');

// Set an array of default query string parameters
$client->setDefaultOption('query', array('abc' => '123'));

body

Sets the body of a request. The value supplied to the body option can be a Guzzle\Http\EntityBodyInterface, string,
fopen resource, or array when sending POST requests. When a body request option is supplied, the option value will
overwrite the $body argument of a client creational method.

auth

Specifies and array of HTTP authorization parameters parameters to use with the request. The array must contain the
username in index [0], the password in index [1], and can optionally contain the authentication type in index [2].
The available authentication types are: “Basic” (default), “Digest”, “NTLM”, or “Any”.

$request = $client->get($url, array(), array(
 'auth' => array('username', 'password', 'Digest')
));

// You can add auth headers to every request of a client
$client->setDefaultOption('auth', array('username', 'password', 'Digest'));

cookies

Specifies an associative array of cookies to add to the request.

allow_redirects

Specifies whether or not the request should follow redirects. Requests will follow redirects by default. Set
allow_redirects to false to disable redirects.

save_to

The save_to option specifies where the body of a response is downloaded. You can pass the path to a file, an fopen
resource, or a Guzzle\Http\EntityBodyInterface object.

See Changing where a response is downloaded for more information on setting the
save_to option.

events

The events option makes it easy to attach listeners to the various events emitted by a request object. The events
options must be an associative array mapping an event name to a Closure or array the contains a Closure and the
priority of the event.

$request = $client->get($url, array(), array(
 'events' => array(
 'request.before_send' => function (\Guzzle\Common\Event $e) {
 echo 'About to send ' . $e['request'];
 }
)
));

// Using the static client:
Guzzle::get($url, array(
 'events' => array(
 'request.before_send' => function (\Guzzle\Common\Event $e) {
 echo 'About to send ' . $e['request'];
 }
)
));

plugins

The plugins options makes it easy to attach an array of plugins to a request.

// Using the static client:
Guzzle::get($url, array(
 'plugins' => array(
 new Guzzle\Plugin\Cache\CachePlugin(),
 new Guzzle\Plugin\Cookie\CookiePlugin()
)
));

exceptions

The exceptions option can be used to disable throwing exceptions for unsuccessful HTTP response codes
(e.g. 404, 500, etc). Set exceptions to false to not throw exceptions.

params

The params options can be used to specify an associative array of data parameters to add to a request. Note that
these are not query string parameters.

timeout / connect_timeout

You can specify the maximum number of seconds to allow for an entire transfer to take place before timing out using
the timeout request option. You can specify the maximum number of seconds to wait while trying to connect using the
connect_timeout request option. Set either of these options to 0 to wait indefinitely.

$request = $client->get('http://www.example.com', array(), array(
 'timeout' => 20,
 'connect_timeout' => 1.5
));

verify

Set to true to enable SSL certificate validation (the default), false to disable SSL certificate validation, or supply
the path to a CA bundle to enable verification using a custom certificate.

cert

The cert option lets you specify a PEM formatted SSL client certificate to use with servers that require one. If the
certificate requires a password, provide an array with the password as the second item.

This would typically be used in conjunction with the ssl_key option.

$request = $client->get('https://www.example.com', array(), array(
 'cert' => '/etc/pki/client_certificate.pem'
)

$request = $client->get('https://www.example.com', array(), array(
 'cert' => array('/etc/pki/client_certificate.pem', 's3cr3tp455w0rd')
)

ssl_key

The ssl_key option lets you specify a file containing your PEM formatted private key, optionally protected by a password.
Note: your password is sensitive, keep the PHP script containing it safe.

This would typically be used in conjunction with the cert option.

$request = $client->get('https://www.example.com', array(), array(
 'ssl_key' => '/etc/pki/private_key.pem'
)

$request = $client->get('https://www.example.com', array(), array(
 'ssl_key' => array('/etc/pki/private_key.pem', 's3cr3tp455w0rd')
)

proxy

The proxy option is used to specify an HTTP proxy (e.g. http://username:password@192.168.16.1:10).

debug

The debug option is used to show verbose cURL output for a transfer.

stream

When using a static client, you can set the stream option to true to return a GuzzleStreamStream object that can
be used to pull data from a stream as needed (rather than have cURL download the entire contents of a response to a
stream all at once).

$stream = Guzzle::get('http://guzzlephp.org', array('stream' => true));
while (!$stream->feof()) {
 echo $stream->readLine();
}

Sending requests

Requests can be sent by calling the send() method of a Request object, but you can also send requests using the
send() method of a Client.

$request = $client->get('http://www.amazon.com');
$response = $client->send($request);

Sending requests in parallel

The Client’s send() method accept a single Guzzle\Http\Message\RequestInterface object or an array of
RequestInterface objects. When an array is specified, the requests will be sent in parallel.

Sending many HTTP requests serially (one at a time) can cause an unnecessary delay in a script’s execution. Each
request must complete before a subsequent request can be sent. By sending requests in parallel, a pool of HTTP
requests can complete at the speed of the slowest request in the pool, significantly reducing the amount of time
needed to execute multiple HTTP requests. Guzzle provides a wrapper for the curl_multi functions in PHP.

Here’s an example of sending three requests in parallel using a client object:

use Guzzle\Common\Exception\MultiTransferException;

try {
 $responses = $client->send(array(
 $client->get('http://www.google.com/'),
 $client->head('http://www.google.com/'),
 $client->get('https://www.github.com/')
));
} catch (MultiTransferException $e) {

 echo "The following exceptions were encountered:\n";
 foreach ($e as $exception) {
 echo $exception->getMessage() . "\n";
 }

 echo "The following requests failed:\n";
 foreach ($e->getFailedRequests() as $request) {
 echo $request . "\n\n";
 }

 echo "The following requests succeeded:\n";
 foreach ($e->getSuccessfulRequests() as $request) {
 echo $request . "\n\n";
 }
}

If the requests succeed, an array of Guzzle\Http\Message\Response objects are returned. A single request failure
will not cause the entire pool of requests to fail. Any exceptions thrown while transferring a pool of requests will
be aggregated into a Guzzle\Common\Exception\MultiTransferException exception.

Plugins and events

Guzzle provides easy to use request plugins that add behavior to requests based on signal slot event notifications
powered by the
Symfony2 Event Dispatcher component [http://symfony.com/doc/2.0/components/event_dispatcher/introduction.html]. Any
event listener or subscriber attached to a Client object will automatically be attached to each request created by the
client.

Using the same cookie session for each request

Attach a Guzzle\Plugin\Cookie\CookiePlugin to a client which will in turn add support for cookies to every request
created by a client, and each request will use the same cookie session:

use Guzzle\Plugin\Cookie\CookiePlugin;
use Guzzle\Plugin\Cookie\CookieJar\ArrayCookieJar;

// Create a new cookie plugin
$cookiePlugin = new CookiePlugin(new ArrayCookieJar());

// Add the cookie plugin to the client
$client->addSubscriber($cookiePlugin);

Events emitted from a client

A Guzzle\Http\Client object emits the following events:

	Event name
	Description
	Event data

	client.create_request
	Called when a client creates a request
	
	client: The client

	request: The created request

use Guzzle\Common\Event;
use Guzzle\Http\Client;

$client = new Client();

// Add a listener that will echo out requests as they are created
$client->getEventDispatcher()->addListener('client.create_request', function (Event $e) {
 echo 'Client object: ' . spl_object_hash($e['client']) . "\n";
 echo "Request object: {$e['request']}\n";
});

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	
 próximo |

 	
 anterior |

 	YARetornoBoleto

 	Documentacao YA Retorno Boleto

Using Request objects

HTTP request messages

Request objects are all about building an HTTP message. Each part of an HTTP request message can be set individually
using methods on the request object or set in bulk using the setUrl() method. Here’s the format of an HTTP request
with each part of the request referencing the method used to change it:

PUT(a) /path(b)?query=123(c) HTTP/1.1(d)
X-Header(e): header
Content-Length(e): 4

data(f)

	
	Method

	The request method can only be set when instantiating a request

	
	Path

	$request->setPath('/path');

	
	Query

	$request->getQuery()->set('query', '123');

	
	Protocol version

	$request->setProtocolVersion('1.1');

	
	Header

	$request->setHeader('X-Header', 'header');

	
	Entity Body

	$request->setBody('data'); // Only available with PUT, POST, PATCH, DELETE

Creating requests with a client

Client objects are responsible for creating HTTP request objects.

GET requests

GET requests [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3] are the most common form of HTTP
requests. When you visit a website in your browser, the HTML of the website is downloaded using a GET request. GET
requests are idempotent requests that are typically used to download content (an entity) identified by a request URL.

use Guzzle\Http\Client;

$client = new Client();

// Create a request that has a query string and an X-Foo header
$request = $client->get('http://www.amazon.com?a=1', array('X-Foo' => 'Bar'));

// Send the request and get the response
$response = $request->send();

You can change where the body of a response is downloaded on any request using the
$request->setResponseBody(string|EntityBodyInterface|resource) method of a request. You can also set the save_to
option of a request:

// Send the response body to a file
$request = $client->get('http://test.com', array(), array('save_to' => '/path/to/file'));

// Send the response body to an fopen resource
$request = $client->get('http://test.com', array(), array('save_to' => fopen('/path/to/file', 'w')));

HEAD requests

HEAD requests [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.4] work exactly like GET requests except
that they do not actually download the response body (entity) of the response message. HEAD requests are useful for
retrieving meta information about an entity identified by a Request-URI.

$client = new Guzzle\Http\Client();
$request = $client->head('http://www.amazon.com');
$response = $request->send();
echo $response->getContentLength();
// >>> Will output the Content-Length header value

DELETE requests

A DELETE method [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.7] requests that the origin server
delete the resource identified by the Request-URI.

$client = new Guzzle\Http\Client();
$request = $client->delete('http://example.com');
$response = $request->send();

POST requests

While POST requests [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5] can be used for a number of
reasons, POST requests are often used when submitting HTML form data to a website. POST requests can include an entity
body in the HTTP request.

POST requests in Guzzle are sent with an application/x-www-form-urlencoded Content-Type header if POST fields are
present but no files are being sent in the POST. If files are specified in the POST request, then the Content-Type
header will become multipart/form-data.

The post() method of a client object accepts four arguments: the URL, optional headers, post fields, and an array of
request options. To send files in the POST request, prepend the @ symbol to the array value (just like you would if
you were using the PHP curl_setopt function).

Here’s how to create a multipart/form-data POST request containing files and fields:

$request = $client->post('http://httpbin.org/post', array(), array(
 'custom_field' => 'my custom value',
 'file_field' => '@/path/to/file.xml'
));

$response = $request->send();

Nota

Remember to always sanitize user input when sending POST requests:

// Prevent users from accessing sensitive files by sanitizing input
$_POST = array('firstname' => '@/etc/passwd');
$request = $client->post('http://www.example.com', array(), array (
 'firstname' => str_replace('@', '', $_POST['firstname'])
));

You can alternatively build up the contents of a POST request.

$request = $client->post('http://httpbin.org/post')
 ->setPostField('custom_field', 'my custom value')
 ->addPostFile('file', '/path/to/file.xml');

$response = $request->send();

Raw POST data

POST requests can also contain raw POST data that is not related to HTML forms.

$request = $client->post('http://httpbin.org/post', array(), 'this is the body');
$response = $request->send();

You can set the body of POST request using the setBody() method of the
Guzzle\Http\Message\EntityEnclosingRequest object. This method accepts a string, a resource returned from
fopen, or a Guzzle\Http\EntityBodyInterface object.

$request = $client->post('http://httpbin.org/post');
// Set the body of the POST to stream the contents of /path/to/large_body.txt
$request->setBody(fopen('/path/to/large_body.txt', 'r'));
$response = $request->send();

PUT requests

The PUT method [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.6] requests that the enclosed entity be
stored under the supplied Request-URI. PUT requests are similar to POST requests in that they both can send an entity
body in the request message.

The body of a PUT request (any any Guzzle\Http\Message\EntityEnclosingRequestInterface object) is always stored as
a Guzzle\Http\Message\EntityBodyInterface object. This allows a great deal of flexibility when sending data to a
remote server. For example, you can stream the contents of a stream returned by fopen, stream the contents of a
callback function, or simply send a string of data.

$request = $client->put('http://httpbin.org/put', array(), 'this is the body');
$response = $request->send();

Just like with POST, PATH, and DELETE requests, you can set the body of a PUT request using the setBody() method.

$request = $client->put('http://httpbin.org/put');
$request->setBody(fopen('/path/to/large_body.txt', 'r'));
$response = $request->send();

PATCH requests

PATCH requests [http://tools.ietf.org/html/rfc5789] are used to modify a resource.

$request = $client->patch('http://httpbin.org', array(), 'this is the body');
$response = $request->send();

OPTIONS requests

The OPTIONS method [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.2] represents a request for
information about the communication options available on the request/response chain identified by the Request-URI.

$request = $client->options('http://httpbin.org');
$response = $request->send();

// Check if the PUT method is supported by this resource
var_export($response->isMethodAllows('PUT'));

Custom requests

You can create custom HTTP requests that use non-standard HTTP methods using the createRequest() method of a
client object.

$request = $client->createRequest('COPY', 'http://example.com/foo', array(
 'Destination' => 'http://example.com/bar',
 'Overwrite' => 'T'
));
$response = $request->send();

Query string parameters

Query string parameters of a request are owned by a request’s Guzzle\Http\Query object that is accessible by
calling $request->getQuery(). The Query class extends from Guzzle\Common\Collection and allows you to set one
or more query string parameters as key value pairs. You can set a parameter on a Query object using the
set($key, $value) method or access the query string object like an associative array. Any previously specified
value for a key will be overwritten when using set(). Use add($key, $value) to add a value to query string
object, and in the event of a collision with an existing value at a specific key, the value will be converted to an
array that contains all of the previously set values.

$request = new Guzzle\Http\Message\Request('GET', 'http://www.example.com?foo=bar&abc=123');

$query = $request->getQuery();
echo "{$query}\n";
// >>> foo=bar&abc=123

$query->remove('abc');
echo "{$query}\n";
// >>> foo=bar

$query->set('foo', 'baz');
echo "{$query}\n";
// >>> foo=baz

$query->add('foo', 'bar');
echo "{$query}\n";
// >>> foo%5B0%5D=baz&foo%5B1%5D=bar

Whoah! What happened there? When foo=bar was added to the existing foo=baz query string parameter, the
aggregator associated with the Query object was used to help convert multi-value query string parameters into a string.
Let’s disable URL-encoding to better see what’s happening.

$query->useUrlEncoding(false);
echo "{$query}\n";
// >>> foo[0]=baz&foo[1]=bar

Nota

URL encoding can be disabled by passing false, enabled by passing true, set to use RFC 1738 by passing
Query::FORM_URLENCODED (internally uses PHP’s urlencode function), or set to RFC 3986 by passing
Query::RFC_3986 (this is the default and internally uses PHP’s rawurlencode function).

As you can see, the multiple values were converted into query string parameters following the default PHP convention of
adding numerically indexed square bracket suffixes to each key (foo[0]=baz&foo[1]=bar). The strategy used to convert
multi-value parameters into a string can be customized using the setAggregator() method of the Query class. Guzzle
ships with the following query string aggregators by default:

	Guzzle\Http\QueryAggregator\PhpAggregator: Aggregates using PHP style brackets (e.g. foo[0]=baz&foo[1]=bar)

	Guzzle\Http\QueryAggregator\DuplicateAggregator: Performs no aggregation and allows for key value pairs to be
repeated in a URL (e.g. foo=baz&foo=bar)

	Guzzle\Http\QueryAggregator\CommaAggregator: Aggregates using commas (e.g. foo=baz,bar)

HTTP Message Headers

HTTP message headers are case insensitive, multiple occurrences of any header can be present in an HTTP message
(whether it’s valid or not), and some servers require specific casing of particular headers. Because of this, request
and response headers are stored in Guzzle\Http\Message\Header objects. The Header object can be cast as a string,
counted, or iterated to retrieve each value from the header. Casting a Header object to a string will return all of
the header values concatenated together using a glue string (typically ”, ”).

A request (and response) object have several methods that allow you to retrieve and modify headers.

	getHeaders(): Get all of the headers of a message as a Guzzle\Http\Message\Header\HeaderCollection object.

	getHeader($header): Get a specific header from a message. If the header exists, you’ll get a
Guzzle\Http\Message\Header object. If the header does not exist, this methods returns null.

	hasHeader($header): Returns true or false based on if the message has a particular header.

	setHeader($header, $value): Set a header value and overwrite any previously set value for this header.

	addHeader($header, $value): Add a header with a particular name. If a previous value was already set by the same,
then the header will contain multiple values.

	removeHeader($header): Remove a header by name from the message.

$request = new Request('GET', 'http://httpbin.com/cookies');
// addHeader will set and append to any existing header values
$request->addHeader('Foo', 'bar');
$request->addHeader('foo', 'baz');
// setHeader overwrites any existing values
$request->setHeader('Test', '123');

// Request headers can be cast as a string
echo $request->getHeader('Foo');
// >>> bar, baz
echo $request->getHeader('Test');
// >>> 123

// You can count the number of headers of a particular case insensitive name
echo count($request->getHeader('foO'));
// >>> 2

// You can iterate over Header objects
foreach ($request->getHeader('foo') as $header) {
 echo $header . "\n";
}

// You can get all of the request headers as a Guzzle\Http\Message\Header\HeaderCollection object
$headers = $request->getHeaders();

// Missing headers return NULL
var_export($request->getHeader('Missing'));
// >>> null

// You can see all of the different variations of a header by calling raw() on the Header
var_export($request->getHeader('foo')->raw());

Setting the body of a request

Requests that can send a body (e.g. PUT, POST, DELETE, PATCH) are instances of
Guzzle\Http\Message\EntityEnclosingRequestInterface. Entity enclosing requests contain several methods that allow
you to specify the body to send with a request.

Use the setBody() method of a request to set the body that will be sent with a request. This method accepts a
string, a resource returned by fopen(), an array, or an instance of Guzzle\Http\EntityBodyInterface. The body
will then be streamed from the underlying EntityBodyInterface object owned by the request. When setting the body
of the request, you can optionally specify a Content-Type header and whether or not to force the request to use
chunked Transfer-Encoding.

$request = $client->put('/user.json');
$request->setBody('{"foo":"baz"}', 'application/json');

Content-Type header

Guzzle will automatically add a Content-Type header to a request if the Content-Type can be guessed based on the file
extension of the payload being sent or the file extension present in the path of a request.

$request = $client->put('/user.json', array(), '{"foo":"bar"}');
// The Content-Type was guessed based on the path of the request
echo $request->getHeader('Content-Type');
// >>> application/json

$request = $client->put('/user.json');
$request->setBody(fopen('/tmp/user_data.json', 'r'));
// The Content-Type was guessed based on the path of the entity body
echo $request->getHeader('Content-Type');
// >>> application/json

Transfer-Encoding: chunked header

When sending HTTP requests that contain a payload, you must let the remote server know how to determine when the entire
message has been sent. This usually is done by supplying a Content-Length header that tells the origin server the
size of the body that is to be sent. In some cases, the size of the payload being sent in a request cannot be known
before initiating the transfer. In these cases (when using HTTP/1.1), you can use the Transfer-Encoding: chunked
header.

If the Content-Length cannot be determined (i.e. using a PHP http:// stream), then Guzzle will automatically add
the Transfer-Encoding: chunked header to the request.

$request = $client->put('/user.json');
$request->setBody(fopen('http://httpbin.org/get', 'r'));

// The Content-Length could not be determined
echo $request->getHeader('Transfer-Encoding');
// >>> chunked

See /http-client/entity-bodies for more information on entity bodies.

Expect: 100-Continue header

The Expect: 100-Continue header is used to help a client prevent sending a large payload to a server that will
reject the request. This allows clients to fail fast rather than waste bandwidth sending an erroneous payload. Guzzle
will automatically add the Expect: 100-Continue header to a request when the size of the payload exceeds 1MB or if
the body of the request is not seekable (this helps to prevent errors when a non-seekable body request is redirected).

Nota

If you find that your larger requests are taking too long to complete, you should first check if the
Expect: 100-Continue header is being sent with the request. Some servers do not respond well to this header,
which causes cURL to sleep for 1 second [http://curl.haxx.se/mail/lib-2010-01/0182.html].

POST fields and files

Any entity enclosing request can send POST style fields and files. This includes POST, PUT, PATCH, and DELETE requests.
Any request that has set POST fields or files will use cURL’s POST message functionality.

$request = $client->post('/post');
// Set an overwrite any previously specified value
$request->setPostField('foo', 'bar');
// Append a value to any existing values
$request->getPostFields()->add('foo', 'baz');
// Remove a POST field by name
$request->removePostField('fizz');

// Add a file to upload (forces multipart/form-data)
$request->addPostFile('my_file', '/path/to/file', 'plain/text');
// Remove a POST file by POST key name
$request->removePostFile('my_other_file');

Dica

Adding a large number of POST fields to a POST request is faster if you use the addPostFields() method so that
you can add and process multiple fields with a single call. Adding multiple POST files is also faster using
addPostFiles().

Working with cookies

Cookies can be modified and retrieved from a request using the following methods:

$request->addCookie($name, $value);
$request->removeCookie($name);
$value = $request->getCookie($name);
$valueArray = $request->getCookies();

Use the cookie plugin if you need to reuse cookies between requests.

Changing where a response is downloaded

When a request is sent, the body of the response will be stored in a PHP temp stream by default. You can change the
location in which the response will be downloaded using $request->setResponseBody($body) or the save_to request
option. This can be useful for downloading the contents of a URL to a specific file.

Here’s an example of using request options:

$request = $this->client->get('http://example.com/large.mov', array(), array(
 'save_to' => '/tmp/large_file.mov'
));
$request->send();
var_export(file_exists('/tmp/large_file.mov'));
// >>> true

Here’s an example of using setResponseBody():

$body = fopen('/tmp/large_file.mov', 'w');
$request = $this->client->get('http://example.com/large.mov');
$request->setResponseBody($body);

// You can more easily specify the name of a file to save the contents
// of the response to by passing a string to ``setResponseBody()``.

$request = $this->client->get('http://example.com/large.mov');
$request->setResponseBody('/tmp/large_file.mov');

Custom cURL options

Most of the functionality implemented in the libcurl bindings has been simplified and abstracted by Guzzle. Developers
who need access to cURL specific functionality [http://www.php.net/curl_setopt] can still add cURL handle
specific behavior to Guzzle HTTP requests by modifying the cURL options collection of a request:

$request->getCurlOptions()->set(CURLOPT_LOW_SPEED_LIMIT, 200);

Other special options that can be set in the curl.options array include:

	debug
	Adds verbose cURL output to a temp stream owned by the cURL handle object

	progress
	Instructs cURL to emit events when IO events occur. This allows you to be
notified when bytes are transferred over the wire by subscribing to a request’s
curl.callback.read, curl.callback.write, and curl.callback.progress
events.

Request options

Requests options can be specified when creating a request or in the request.options parameter of a client. These
options can control various aspects of a request including: headers to send, query string data, where the response
should be downloaded, proxies, auth, etc.

$request = $client->get($url, $headers, array('proxy' => 'http://proxy.com'));

See Request options for more information.

Working with errors

HTTP errors

Requests that receive a 4xx or 5xx response will throw a Guzzle\Http\Exception\BadResponseException. More
specifically, 4xx errors throw a Guzzle\Http\Exception\ClientErrorResponseException, and 5xx errors throw a
Guzzle\Http\Exception\ServerErrorResponseException. You can catch the specific exceptions or just catch the
BadResponseException to deal with either type of error. Here’s an example of catching a generic BadResponseException:

try {
 $response = $client->get('/not_found.xml')->send();
} catch (Guzzle\Http\Exception\BadResponseException $e) {
 echo 'Uh oh! ' . $e->getMessage();
 echo 'HTTP request URL: ' . $e->getRequest()->getUrl() . "\n";
 echo 'HTTP request: ' . $e->getRequest() . "\n";
 echo 'HTTP response status: ' . $e->getResponse()->getStatusCode() . "\n";
 echo 'HTTP response: ' . $e->getResponse() . "\n";
}

Throwing an exception when a 4xx or 5xx response is encountered is the default behavior of Guzzle requests. This
behavior can be overridden by adding an event listener with a higher priority than -255 that stops event propagation.
You can subscribe to request.error to receive notifications any time an unsuccessful response is received.

You can change the response that will be associated with the request by calling setResponse() on the
$event['request'] object passed into your listener, or by changing the $event['response'] value of the
Guzzle\Common\Event object that is passed to your listener. Transparently changing the response associated with a
request by modifying the event allows you to retry failed requests without complicating the code that uses the client.
This might be useful for sending requests to a web service that has expiring auth tokens. When a response shows that
your token has expired, you can get a new token, retry the request with the new token, and return the successful
response to the user.

Here’s an example of retrying a request using updated authorization credentials when a 401 response is received,
overriding the response of the original request with the new response, and still allowing the default exception
behavior to be called when other non-200 response status codes are encountered:

// Add custom error handling to any request created by this client
$client->getEventDispatcher()->addListener('request.error', function(Event $event) {

 if ($event['response']->getStatusCode() == 401) {

 $newRequest = $event['request']->clone();
 $newRequest->setHeader('X-Auth-Header', MyApplication::getNewAuthToken());
 $newResponse = $newRequest->send();

 // Set the response object of the request without firing more events
 $event['response'] = $newResponse;

 // You can also change the response and fire the normal chain of
 // events by calling $event['request']->setResponse($newResponse);

 // Stop other events from firing when you override 401 responses
 $event->stopPropagation();
 }

});

cURL errors

Connection problems and cURL specific errors can also occur when transferring requests using Guzzle. When Guzzle
encounters cURL specific errors while transferring a single request, a Guzzle\Http\Exception\CurlException is
thrown with an informative error message and access to the cURL error message.

A Guzzle\Http\Exception\MultiTransferException exception is thrown when a cURL specific error occurs while
transferring multiple requests in parallel. You can then iterate over all of the exceptions encountered during the
transfer.

Plugins and events

Guzzle request objects expose various events that allow you to hook in custom logic. A request object owns a
Symfony\Component\EventDispatcher\EventDispatcher object that can be accessed by calling
$request->getEventDispatcher(). You can use the event dispatcher to add listeners (a simple callback function) or
event subscribers (classes that listen to specific events of a dispatcher). You can add event subscribers to a request
directly by just calling $request->addSubscriber($mySubscriber);.

Events emitted from a request

A Guzzle\Http\Message\Request and Guzzle\Http\Message\EntityEnclosingRequest object emit the following events:

	Event name
	Description
	Event data

	request.before_send
	About to send request
	
	request: Request to be sent

	request.sent
	Sent the request
	
	request: Request that was sent

	response: Received response

	request.complete
	Completed a full HTTP transaction
	
	request: Request that was sent

	response: Received response

	request.success
	Completed a successful request
	
	request: Request that was sent

	response: Received response

	request.error
	Completed an unsuccessful request
	
	request: Request that was sent

	response: Received response

	request.exception
	An unsuccessful response was
received.
	
	request: Request

	response: Received response

	exception: BadResponseException

	request.receive.status_line
	Received the start of a response
	
	line: Full response start line

	status_code: Status code

	reason_phrase: Reason phrase

	previous_response: (e.g. redirect)

	curl.callback.progress
	cURL progress event (only dispatched when
emit_io is set on a request’s curl
options)
	
	handle: CurlHandle

	download_size: Total download size

	downloaded: Bytes downloaded

	upload_size: Total upload bytes

	uploaded: Bytes uploaded

	curl.callback.write
	cURL event called when data is written to
an outgoing stream
	
	request: Request

	write: Data being written

	curl.callback.read
	cURL event called when data is written to
an incoming stream
	
	request: Request

	read: Data being read

Creating a request event listener

Here’s an example that listens to the request.complete event of a request and prints the request and response.

use Guzzle\Common\Event;

$request = $client->get('http://www.google.com');

// Echo out the response that was received
$request->getEventDispatcher()->addListener('request.complete', function (Event $e) {
 echo $e['request'] . "\n\n";
 echo $e['response'];
});

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	
 próximo |

 	
 anterior |

 	YARetornoBoleto

 	Documentacao YA Retorno Boleto

Plugin system overview

The workflow of sending a request and parsing a response is driven by Guzzle’s event system, which is powered by the
Symfony2 Event Dispatcher component [http://symfony.com/doc/current/components/event_dispatcher/introduction.html].

Any object in Guzzle that emits events will implement the Guzzle\Common\HasEventDispatcher interface. You can add
event subscribers directly to these objects using the addSubscriber() method, or you can grab the
Symfony\Component\EventDispatcher\EventDispatcher object owned by the object using getEventDispatcher() and
add a listener or event subscriber.

Adding event subscribers to clients

Any event subscriber or event listener attached to the EventDispatcher of a Guzzle\Http\Client or
Guzzle\Service\Client object will automatically be attached to all request objects created by the client. This
allows you to attach, for example, a HistoryPlugin to a client object, and from that point on, every request sent
through that client will utilize the HistoryPlugin.

use Guzzle\Plugin\History\HistoryPlugin;
use Guzzle\Service\Client;

$client = new Client();

// Create a history plugin and attach it to the client
$history = new HistoryPlugin();
$client->addSubscriber($history);

// Create and send a request. This request will also utilize the HistoryPlugin
$client->get('http://httpbin.org')->send();

// Echo out the last sent request by the client
echo $history->getLastRequest();

Dica

Create event subscribers, or plugins, to implement reusable logic that can be
shared across clients. Event subscribers are also easier to test than anonymous functions.

Pre-Built plugins

Guzzle provides easy to use request plugins that add behavior to requests based on signal slot event notifications
powered by the Symfony2 Event Dispatcher component.

	Async plugin

	Backoff retry plugin

	HTTP Cache plugin

	Cookie plugin

	cURL authentication plugin

	History plugin

	Log plugin

	MD5 validator plugin

	Mock plugin

	OAuth plugin

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	
 anterior |

 	YARetornoBoleto

 	Documentacao YA Retorno Boleto

Creating plugins

Guzzle is extremely extensible because of the behavioral modifications that can be added to requests, clients, and
commands using an event system. Before and after the majority of actions are taken in the library, an event is emitted
with the name of the event and context surrounding the event. Observers can subscribe to a subject and modify the
subject based on the events received. Guzzle’s event system utilizes the Symfony2 EventDispatcher and is the backbone
of its plugin architecture.

Overview

Plugins must implement the Symfony\Component\EventDispatcher\EventSubscriberInterface interface. The
EventSubscriberInterface requires that your class implements a static method, getSubscribedEvents(), that
returns an associative array mapping events to methods on the object. See the
Symfony2 documentation [http://symfony.com/doc/2.0/book/internals.html#the-event-dispatcher] for more information.

Plugins can be attached to any subject, or object in Guzzle that implements that
Guzzle\Common\HasDispatcherInterface.

Subscribing to a subject

You can subscribe an instantiated observer to an event by calling addSubscriber on a subject.

$testPlugin = new TestPlugin();
$client->addSubscriber($testPlugin);

You can also subscribe to only specific events using a closure:

$client->getEventDispatcher()->addListener('request.create', function(Event $event) {
 echo $event->getName();
 echo $event['request'];
});

Guzzle\Common\Event objects are passed to notified functions. The Event object has a getName() method which
return the name of the emitted event and may contain contextual information that can be accessed like an array.

Knowing what events to listen to

Any class that implements the Guzzle\Common\HasDispatcherInterface must implement a static method,
getAllEvents(), that returns an array of the events that are emitted from the object. You can browse the source
to see each event, or you can call the static method directly in your code to get a list of available events.

Event hooks

	Events emitted from a client

	service-client-events

	Events emitted from a request

	Guzzle\Http\Curl\CurlMulti:

	service-builder-events

Examples of the event system

Simple Echo plugin

This simple plugin prints a string containing the request that is about to be sent by listening to the
request.before_send event:

use Symfony\Component\EventDispatcher\EventSubscriberInterface;

class EchoPlugin implements EventSubscriberInterface
{
 public static function getSubscribedEvents()
 {
 return array('request.before_send' => 'onBeforeSend');
 }

 public function onBeforeSend(Guzzle\Common\Event $event)
 {
 echo 'About to send a request: ' . $event['request'] . "\n";
 }
}

$client = new Guzzle\Service\Client('http://www.test.com/');

// Create the plugin and add it as an event subscriber
$plugin = new EchoPlugin();
$client->addSubscriber($plugin);

// Send a request and notice that the request is printed to the screen
$client->get('/')->send();

Running the above code will print a string containing the HTTP request that is about to be sent.

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 Navegação

 	
 índice

 	YARetornoBoleto

Índice

 Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

 _static/comment-close.png

_static/down.png

events/cache-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

HTTP Cache plugin

Guzzle can leverage HTTP’s caching specifications using the Guzzle\Plugin\Cache\CachePlugin. The CachePlugin
provides a private transparent proxy cache that caches HTTP responses. The caching logic, based on
RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html], uses HTTP headers to control caching behavior,
cache lifetime, and supports Vary, ETag, and Last-Modified based revalidation:

use Guzzle\Http\Client;
use Doctrine\Common\Cache\FilesystemCache;
use Guzzle\Cache\DoctrineCacheAdapter;
use Guzzle\Plugin\Cache\CachePlugin;
use Guzzle\Plugin\Cache\DefaultCacheStorage;

$client = new Client('http://www.test.com/');

$cachePlugin = new CachePlugin(array(
 'storage' => new DefaultCacheStorage(
 new DoctrineCacheAdapter(
 new FilesystemCache('/path/to/cache/files')
)
)
));

// Add the cache plugin to the client object
$client->addSubscriber($cachePlugin);
$client->get('http://www.wikipedia.org/')->send();

// The next request will revalidate against the origin server to see if it
// has been modified. If a 304 response is received the response will be
// served from cache
$client->get('http://www.wikipedia.org/')->send();

The cache plugin intercepts GET and HEAD requests before they are actually transferred to the origin server. The cache
plugin then generates a hash key based on the request method and URL, and checks to see if a response exists in the cache. If
a response exists in the cache, the cache adapter then checks to make sure that the caching rules associated with the response
satisfy the request, and ensures that response still fresh. If the response is acceptable for the request any required
revalidation, then the cached response is served instead of contacting the origin server.

Vary

Cache keys are derived from a request method and a request URL. Multiple responses can map to the same cache key and
stored in Guzzle’s underlying cache storage object. You should use the Vary HTTP header to tell the cache storage
object that the cache response must have been cached for a request that matches the headers specified in the Vary header
of the request. This allows you to have specific cache entries for the same request URL but variations in a request’s
headers determine which cache entry is served. Please see the http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44
for more information.

Cache options

There are several options you can add to requests or clients to modify the behavior of the cache plugin.

Override cache TTL

You can override the number of seconds a cacheable response is stored in the cache by setting the
cache.override_ttl parameter on the params object of a request:

// If the response to the request is cacheable, then the response will be cached for 100 seconds
$request->getParams()->set('cache.override_ttl', 100);

If a response doesn’t specify any freshness policy, it will be kept in cache for 3600 seconds by default.

Custom caching decision

If the service you are interacting with does not return caching headers or returns responses that are normally
something that would not be cached, you can set a custom can_cache object on the constructor of the CachePlugin
and provide a Guzzle\Plugin\Cache\CanCacheInterface object. You can use the
Guzzle\Plugin\Cache\CallbackCanCacheStrategy to easily make a caching decision based on an HTTP request and
response.

Revalidation options

You can change the revalidation behavior of a request using the cache.revalidate parameter. Setting this
parameter to never will ensure that a revalidation request is never sent, and the response is always served from
the origin server. Setting this parameter to skip will never revalidate and uses the response stored in the cache.

Normalizing requests for caching

Use the cache.key_filter parameter if you wish to strip certain query string parameters from your
request before creating a unique hash for the request. This parameter can be useful if your requests have query
string values that cause each request URL to be unique (thus preventing a cache hit). The cache.key_filter
format is simply a comma separated list of query string values to remove from the URL when creating a cache key.
For example, here we are saying that the a and q query string variables should be ignored when generating a
cache key for the request:

$request->getParams()->set('cache.key_filter', 'a, q');

Other options

There are many other options available to the CachePlugin that can meet almost any caching requirement, including
custom revalidation implementations, custom cache key generators, custom caching decision strategies, and custom
cache storage objects. Take a look the constructor of Guzzle\Plugin\Cache\CachePlugin for more information.

Setting Client-wide cache settings

You can specify cache settings for every request created by a client by adding cache settings to the configuration
options of a client.

$client = new Guzzle\Http\Client('http://www.test.com', array(
 'request.params' => array(
 'cache.override_ttl' => 3600,
 'params.cache.revalidate' => 'never'
)
));

echo $client->get('/')->getParams()->get('cache.override_ttl');
// >>> 3600

echo $client->get('/')->getParams()->get('cache.revalidate');
// >>> never

Cache revalidation

If the cache plugin determines that a response to a GET request needs revalidation, a conditional GET is transferred
to the origin server. If the origin server returns a 304 response, then a response containing the merged headers of
the cached response with the new response and the entity body of the cached response is returned. Custom revalidation
strategies can be injected into a CachePlugin if needed.

Cache adapters

Guzzle doesn’t try to reinvent the wheel when it comes to caching or logging. Plenty of other frameworks have
excellent solutions in place that you are probably already using in your applications. Guzzle uses adapters for
caching and logging. The cache plugin requires a cache adapter so that is can store responses in a cache. Guzzle
currently supports cache adapters for Doctrine 2.0 [http://www.doctrine-project.org/] and the
Zend Framework [http://framework.zend.com].

Doctrine cache adapter

use Doctrine\Common\Cache\ArrayCache;
use Guzzle\Cache\DoctrineCacheAdapter;
use Guzzle\Plugin\Cache\CachePlugin;

$backend = new ArrayCache();
$adapter = new DoctrineCacheAdapter($backend);
$cache = new CachePlugin($adapter);

Zend Framework cache adapter

use Guzzle\Cache\ZendCacheAdapter;
use Zend\Cache\Backend\TestBackend;

$backend = new TestBackend();
$adapter = new ZendCacheAdapter($backend);
$cache = new CachePlugin($adapter);

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

_static/down-pressed.png

events/history-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

History plugin

The history plugin tracks all of the requests and responses sent through a request or client. This plugin can be
useful for crawling or unit testing. By default, the history plugin stores up to 10 requests and responses.

use Guzzle\Http\Client;
use Guzzle\Plugin\History\HistoryPlugin;

$client = new Client('http://www.test.com/');

// Add the history plugin to the client object
$history = new HistoryPlugin();
$history->setLimit(5);
$client->addSubscriber($history);

$client->get('http://www.yahoo.com/')->send();

echo $history->getLastRequest();
echo $history->getLastResponse();
echo count($history);

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

_static/comment.png

events/mock-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

Mock plugin

The mock plugin is useful for testing Guzzle clients. The mock plugin allows you to queue an array of responses that
will satisfy requests sent from a client by consuming the request queue in FIFO order.

use Guzzle\Http\Client;
use Guzzle\Plugin\Mock\MockPlugin;
use Guzzle\Http\Message\Response;

$client = new Client('http://www.test.com/');

$mock = new MockPlugin();
$mock->addResponse(new Response(200))
 ->addResponse(new Response(404));

// Add the mock plugin to the client object
$client->addSubscriber($mock);

// The following request will receive a 200 response from the plugin
$client->get('http://www.example.com/')->send();

// The following request will receive a 404 response from the plugin
$client->get('http://www.test.com/')->send();

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

events/oauth-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

OAuth plugin

Guzzle ships with an OAuth 1.0 plugin that can sign requests using a consumer key, consumer secret, OAuth token,
and OAuth secret. Here’s an example showing how to send an authenticated request to the Twitter REST API:

use Guzzle\Http\Client;
use Guzzle\Plugin\Oauth\OauthPlugin;

$client = new Client('http://api.twitter.com/1');
$oauth = new OauthPlugin(array(
 'consumer_key' => 'my_key',
 'consumer_secret' => 'my_secret',
 'token' => 'my_token',
 'token_secret' => 'my_token_secret'
));
$client->addSubscriber($oauth);

$response = $client->get('statuses/public_timeline.json')->send();

If you need to use a custom signing method, you can pass a signature_method configuration option in the
constructor of the OAuth plugin. The signature_method option must be a callable variable that accepts a string to
sign and signing key and returns a signed string.

Nota

You can omit the token and token_secret options to use two-legged OAuth.

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

events/curl-auth-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

cURL authentication plugin

Aviso

The CurlAuthPlugin is deprecated. You should use the auth parameter of a client to add authorization headers to
every request created by a client.

$client->setDefaultOption('auth', array('username', 'password', 'Basic|Digest|NTLM|Any'));

If your web service client requires basic authorization, then you can use the CurlAuthPlugin to easily add an
Authorization header to each request sent by the client.

use Guzzle\Http\Client;
use Guzzle\Plugin\CurlAuth\CurlAuthPlugin;

$client = new Client('http://www.test.com/');

// Add the auth plugin to the client object
$authPlugin = new CurlAuthPlugin('username', 'password');
$client->addSubscriber($authPlugin);

$response = $client->get('projects/1/people')->send();
$xml = new SimpleXMLElement($response->getBody(true));
foreach ($xml->person as $person) {
 echo $person->email . "\n";
}

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

_static/plus.png

events/log-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

Log plugin

Use the Guzzle\Plugin\Log\LogPlugin to view all data sent over the wire, including entity bodies and redirects.

use Guzzle\Http\Client;
use Guzzle\Log\Zf1LogAdapter;
use Guzzle\Plugin\Log\LogPlugin;
use Guzzle\Log\MessageFormatter;

$client = new Client('http://www.test.com/');

$adapter = new Zf1LogAdapter(
 new \Zend_Log(new \Zend_Log_Writer_Stream('php://output'))
);
$logPlugin = new LogPlugin($adapter, MessageFormatter::DEBUG_FORMAT);

// Attach the plugin to the client, which will in turn be attached to all
// requests generated by the client
$client->addSubscriber($logPlugin);

$response = $client->get('http://google.com')->send();

The code sample above wraps a Zend_Log object using a Guzzle\Log\Zf1LogAdapter. After attaching the plugin to
the client, all data sent over the wire will be logged to stdout.

The first argument of the LogPlugin’s constructor accepts a Guzzle\Log\LogAdapterInterface object. This object is
an adapter that allows you to use the logging capabilities of your favorite log implementation. The second argument of
the constructor accepts a Guzzle\Log\MessageFormatter or a log messaged format string. The format string uses
variable substitution and allows you to define the log data that is important to your application. The different
variables that can be injected are as follows:

		Variable
		Substitution

		{request}
		Full HTTP request message

		{response}
		Full HTTP response message

		{ts}
		Timestamp

		{host}
		Host of the request

		{method}
		Method of the request

		{url}
		URL of the request

		{host}
		Host of the request

		{protocol}
		Request protocol

		{version}
		Protocol version

		{resource}
		Resource of the request (path + query + fragment)

		{port}
		Port of the request

		{hostname}
		Hostname of the machine that sent the request

		{code}
		Status code of the response (if available)

		{phrase}
		Reason phrase of the response (if available)

		{curl_error}
		Curl error message (if available)

		{curl_code}
		Curl error code (if available)

		{curl_stderr}
		Curl standard error (if available)

		{connect_time}
		Time in seconds it took to establish the connection (if available)

		{total_time}
		Total transaction time in seconds for last transfer (if available)

		{req_header_*}
		Replace * with the lowercased name of a request header to add to the message

		{res_header_*}
		Replace * with the lowercased name of a response header to add to the message

		{req_body}
		Request body

		{res_body}
		Response body

The LogPlugin has a helper method that can be used when debugging that will output the full HTTP request and
response of a transaction:

$client->addSubscriber(LogPlugin::getDebugPlugin());

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

component/http-redirects.html

 Navegação

 		
 índice

 		YARetornoBoleto »

HTTP redirects

By default, Guzzle will automatically follow redirects using the non-RFC compliant implementation used by most web
browsers. This means that redirects for POST requests are followed by a GET request. You can force RFC compliance by
enabling the strict mode on a request’s parameter object:

// Set per request
$request = $client->post();
$request->getParams()->set('redirect.strict', true);

// You can set globally on a client so all requests use strict redirects
$client->getConfig()->set('request.params', array(
 'redirect.strict' => true
));

By default, Guzzle will redirect up to 5 times before throwing a Guzzle\Http\Exception\TooManyRedirectsException.
You can raise or lower this value using the redirect.max parameter of a request object:

$request->getParams()->set('redirect.max', 2);

Redirect history

You can get the number of redirects of a request using the resulting response object’s getRedirectCount() method.
Similar to cURL’s effective_url property, Guzzle provides the effective URL, or the last redirect URL that returned
the request, in a response’s getEffectiveUrl() method.

When testing or debugging, it is often useful to see a history of redirects for a particular request. This can be
achieved using the HistoryPlugin.

$request = $client->get('/');
$history = new Guzzle\Plugin\History\HistoryPlugin();
$request->addSubscriber($history);
$response = $request->send();

// Get the last redirect URL or the URL of the request that received
// this response
echo $response->getEffectiveUrl();

// Get the number of redirects
echo $response->getRedirectCount();

// Iterate over each sent request and response
foreach ($history->getAll() as $transaction) {
 // Request object
 echo $transaction['request']->getUrl() . "\n";
 // Response object
 echo $transaction['response']->getEffectiveUrl() . "\n";
}

// Or, simply cast the HistoryPlugin to a string to view each request and response
echo $history;

Disabling redirects

You can disable redirects on a client by passing a configuration option in the client’s constructor:

$client = new Client(null, array('redirect.disable' => true));

You can also disable redirects per request:

$request = $client->get($url, array(), array('allow_redirects' => false));

Redirects and non-repeatable streams

If you are redirected when sending data from a non-repeatable stream and some of the data has been read off of the
stream, then you will get a Guzzle\Http\Exception\CouldNotRewindStreamException. You can get around this error by
adding a custom rewind method to the entity body object being sent in the request.

$request = $client->post(
 'http://httpbin.com/redirect/2',
 null,
 fopen('http://httpbin.com/get', 'r')
);

// Add a custom function that can be used to rewind the stream
// (reopen in this example)
$request->getBody()->setRewindFunction(function ($body) {
 $body->setStream(fopen('http://httpbin.com/get', 'r'));
 return true;
);

$response = $client->send();

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

events/cookie-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

Cookie plugin

Some web services require a Cookie in order to maintain a session. The Guzzle\Plugin\Cookie\CookiePlugin will add
cookies to requests and parse cookies from responses using a CookieJar object:

use Guzzle\Http\Client;
use Guzzle\Plugin\Cookie\CookiePlugin;
use Guzzle\Plugin\Cookie\CookieJar\ArrayCookieJar;

$cookiePlugin = new CookiePlugin(new ArrayCookieJar());

// Add the cookie plugin to a client
$client = new Client('http://www.test.com/');
$client->addSubscriber($cookiePlugin);

// Send the request with no cookies and parse the returned cookies
$client->get('http://www.yahoo.com/')->send();

// Send the request again, noticing that cookies are being sent
$request = $client->get('http://www.yahoo.com/');
$request->send();

echo $request;

You can disable cookies per-request by setting the cookies.disable value to true on a request’s params object.

$request->getParams()->set('cookies.disable', true);

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

events/async-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

Async plugin

The AsyncPlugin allows you to send requests that do not wait on a response. This is handled through cURL by utilizing
the progress event. When a request has sent all of its data to the remote server, Guzzle adds a 1ms timeout on the
request and instructs cURL to not download the body of the response. The async plugin then catches the exception and
adds a mock response to the request, along with an X-Guzzle-Async header to let you know that the response was not
fully downloaded.

use Guzzle\Http\Client;
use Guzzle\Plugin\Async\AsyncPlugin;

$client = new Client('http://www.example.com');
$client->addSubscriber(new AsyncPlugin());
$response = $client->get()->send();

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

events/md5-validator-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

MD5 validator plugin

Entity bodies can sometimes be modified over the wire due to a faulty TCP transport or misbehaving proxy. If an HTTP
response contains a Content-MD5 header, then a MD5 hash of the entity body of a response can be compared against the
Content-MD5 header of the response to determine if the response was delivered intact. The
Guzzle\Plugin\Md5\Md5ValidatorPlugin will throw an UnexpectedValueException if the calculated MD5 hash does
not match the Content-MD5 header value:

use Guzzle\Http\Client;
use Guzzle\Plugin\Md5\Md5ValidatorPlugin;

$client = new Client('http://www.test.com/');

$md5Plugin = new Md5ValidatorPlugin();

// Add the md5 plugin to the client object
$client->addSubscriber($md5Plugin);

$request = $client->get('http://www.yahoo.com/');
$request->send();

Calculating the MD5 hash of a large entity body or an entity body that was transferred using a Content-Encoding is an
expensive operation. When working in high performance applications, you might consider skipping the MD5 hash
validation for entity bodies bigger than a certain size or Content-Encoded entity bodies
(see Guzzle\Plugin\Md5\Md5ValidatorPlugin for more information).

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

events/backoff-plugin.html

 Navegação

 		
 índice

 		YARetornoBoleto »

Backoff retry plugin

The Guzzle\Plugin\Backoff\BackoffPlugin automatically retries failed HTTP requests using custom backoff strategies:

use Guzzle\Http\Client;
use Guzzle\Plugin\Backoff\BackoffPlugin;

$client = new Client('http://www.test.com/');
// Use a static factory method to get a backoff plugin using the exponential backoff strategy
$backoffPlugin = BackoffPlugin::getExponentialBackoff();

// Add the backoff plugin to the client object
$client->addSubscriber($backoffPlugin);

The BackoffPlugin’s constructor accepts a Guzzle\Plugin\Backoff\BackoffStrategyInterface object that is used to
determine when a retry should be issued and how long to delay between retries. The above code example shows how to
attach a BackoffPlugin to a client that is pre-configured to retry failed 500 and 503 responses using truncated
exponential backoff (emulating the behavior of Guzzle 2’s ExponentialBackoffPlugin).

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

component/response.html

 Navegação

 		
 índice

 		YARetornoBoleto »

Using Response objects

Sending a request will return a Guzzle\Http\Message\Response object. You can view the raw HTTP response message by
casting the Response object to a string. Casting the response to a string will return the entity body of the response
as a string too, so this might be an expensive operation if the entity body is stored in a file or network stream. If
you only want to see the response headers, you can call getRawHeaders().

Response status line

The different parts of a response’s status line [http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.1]
(the first line of the response HTTP message) are easily retrievable.

$response = $client->get('http://www.amazon.com')->send();

echo $response->getStatusCode(); // >>> 200
echo $response->getReasonPhrase(); // >>> OK
echo $response->getProtocol(); // >>> HTTP
echo $response->getProtocolVersion(); // >>> 1.1

You can determine the type of the response using several helper methods:

$response->isSuccessful(); // true
$response->isInformational();
$response->isRedirect();
$response->isClientError();
$response->isServerError();

Response headers

The Response object contains helper methods for retrieving common response headers. These helper methods normalize the
variations of HTTP response headers.

$response->getCacheControl();
$response->getContentType();
$response->getContentLength();
$response->getContentEncoding();
$response->getContentMd5();
$response->getEtag();
// etc... There are methods for every known response header

You can interact with the Response headers using the same exact methods used to interact with Request headers. See
HTTP Message Headers for more information.

echo $response->getHeader('Content-Type');
echo $response->getHeader('Content-Length');
echo $response->getHeaders()['Content-Type']; // PHP 5.4

Response body

The entity body object of a response can be retrieved by calling $response->getBody(). The response EntityBody can
be cast to a string, or you can pass true to this method to retrieve the body as a string.

$request = $client->get('http://www.amazon.com');
$response = $request->send();
echo $response->getBody();

See /http-client/entity-bodies for more information on entity bodies.

JSON Responses

You can easily parse and use a JSON response as an array using the json() method of a response. This method will
always return an array if the response is valid JSON or if the response body is empty. You will get an exception if you
call this method and the response is not valid JSON.

$data = $response->json();
echo gettype($data);
// >>> array

XML Responses

You can easily parse and use a XML response as SimpleXMLElement object using the xml() method of a response. This
method will always return a SimpleXMLElement object if the response is valid XML or if the response body is empty. You
will get an exception if you call this method and the response is not valid XML.

$xml = $response->xml();
echo $xml->foo;
// >>> Bar!

Streaming responses

Some web services provide streaming APIs that allow a client to keep a HTTP request open for an extended period of
time while polling and reading. Guzzle provides a simple way to convert HTTP request messages into
Guzzle\Stream\Stream objects so that you can send the initial headers of a request, read the response headers, and
pull in the response body manually as needed.

Here’s an example using the Twitter Streaming API to track the keyword “bieber”:

use Guzzle\Http\Client;
use Guzzle\Stream\PhpStreamRequestFactory;

$client = new Client('https://stream.twitter.com/1');

$request = $client->post('statuses/filter.json', null, array(
 'track' => 'bieber'
));

$request->setAuth('myusername', 'mypassword');

$factory = new PhpStreamRequestFactory();
$stream = $factory->fromRequest($request);

// Read until the stream is closed
while (!$stream->feof()) {
 // Read a line from the stream
 $line = $stream->readLine();
 // JSON decode the line of data
 $data = json_decode($line, true);
}

You can use the stream request option when using a static client to more easily create a streaming response.

$stream = Guzzle::get('http://guzzlephp.org', array('stream' => true));
while (!$stream->feof()) {
 echo $stream->readLine();
}

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

component/entity-bodies.html

 Navegação

 		
 índice

 		YARetornoBoleto »

Request and response bodies

Entity body [http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html] is the term used for the body of an HTTP
message. The entity body of requests and responses is inherently a
PHP stream [http://php.net/manual/en/book.stream.php] in Guzzle. The body of the request can be either a string or
a PHP stream which are converted into a Guzzle\Http\EntityBody object using its factory method. When using a
string, the entity body is stored in a temp PHP stream [http://www.php.net/manual/en/wrappers.php.php]. The use of
temp PHP streams helps to protect your application from running out of memory when sending or receiving large entity
bodies in your messages. When more than 2MB of data is stored in a temp stream, it automatically stores the data on
disk rather than in memory.

EntityBody objects provide a great deal of functionality: compression, decompression, calculate the Content-MD5,
calculate the Content-Length (when the resource is repeatable), guessing the Content-Type, and more. Guzzle doesn’t
need to load an entire entity body into a string when sending or retrieving data; entity bodies are streamed when
being uploaded and downloaded.

Here’s an example of gzip compressing a text file then sending the file to a URL:

use Guzzle\Http\EntityBody;

$body = EntityBody::factory(fopen('/path/to/file.txt', 'r+'));
echo $body->read(1024);
$body->seek(0, SEEK_END);
$body->write('foo');
echo $body->ftell();
$body->rewind();

// Send a request using the body
$response = $client->put('http://localhost:8080/uploads', null, $body)->send();

The body of the request can be specified in the Client::put() or Client::post() method, or, you can specify
the body of the request by calling the setBody() method of any
Guzzle\Http\Message\EntityEnclosingRequestInterface object.

Compression

You can compress the contents of an EntityBody object using the compress() method. The compress method accepts a
filter that must match to one of the supported
PHP stream filters [http://www.php.net/manual/en/filters.compression.php] on your system (e.g. zlib.deflate,
bzip2.compress, etc). Compressing an entity body will stream the entire entity body through a stream compression
filter into a temporary PHP stream. You can uncompress an entity body using the uncompress() method and passing
the PHP stream filter to use when decompressing the stream (e.g. zlib.inflate).

use Guzzle\Http\EntityBody;

$body = EntityBody::factory(fopen('/tmp/test.txt', 'r+'));
echo $body->getSize();
// >>> 1048576

// Compress using the default zlib.deflate filter
$body->compress();
echo $body->getSize();
// >>> 314572

// Decompress the stream
$body->uncompress();
echo $body->getSize();
// >>> 1048576

Decorators

Guzzle provides several EntityBody decorators that can be used to add functionality to an EntityBody at runtime.

IoEmittingEntityBody

This decorator will emit events when data is read from a stream or written to a stream. Add an event subscriber to the
entity body’s body.read or body.write methods to receive notifications when data data is transferred.

use Guzzle\Common\Event;
use Guzzle\Http\EntityBody;
use Guzzle\Http\IoEmittingEntityBody;

$original = EntityBody::factory(fopen('/tmp/test.txt', 'r+'));
$body = new IoEmittingEntityBody($original);

// Listen for read events
$body->getEventDispatcher()->addListener('body.read', function (Event $e) {
 // Grab data from the event
 $entityBody = $e['body'];
 // Amount of data retrieved from the body
 $lengthOfData = $e['length'];
 // The actual data that was read
 $data = $e['read'];
});

// Listen for write events
$body->getEventDispatcher()->addListener('body.write', function (Event $e) {
 // Grab data from the event
 $entityBody = $e['body'];
 // The data that was written
 $data = $e['write'];
 // The actual amount of data that was written
 $data = $e['read'];
});

ReadLimitEntityBody

The ReadLimitEntityBody decorator can be used to transfer a subset or slice of an existing EntityBody object. This can
be useful for breaking a large file into smaller pieces to be sent in chunks (e.g. Amazon S3’s multipart upload API).

use Guzzle\Http\EntityBody;
use Guzzle\Http\ReadLimitEntityBody;

$original = EntityBody::factory(fopen('/tmp/test.txt', 'r+'));
echo $original->getSize();
// >>> 1048576

// Limit the size of the body to 1024 bytes and start reading from byte 2048
$body = new ReadLimitEntityBody($original, 1024, 2048);
echo $body->getSize();
// >>> 1024
echo $body->ftell();
// >>> 0

CachingEntityBody

The CachingEntityBody decorator is used to allow seeking over previously read bytes on non-seekable read streams. This
can be useful when transferring a non-seekable entity body fails due to needing to rewind the stream (for example,
resulting from a redirect). Data that is read from the remote stream will be buffered in a PHP temp stream so that
previously read bytes are cached first in memory, then on disk.

use Guzzle\Http\EntityBody;
use Guzzle\Http\CachingEntityBody;

$original = EntityBody::factory(fopen('http://www.google.com', 'r'));
$body = new CachingEntityBody($original);

$body->read(1024);
echo $body->ftell();
// >>> 1024

$body->seek(0);
echo $body->ftell();
// >>> 0

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

_static/minus.png

search.html

 Navegação

 		
 índice

 		YARetornoBoleto »

 Pesquisar

 Por favor ative o JavaScript para habilitar a
"
" funcionalidade de pesquisa.

 A partir daqui você pode pesquisar estes documentos. Preencha suas
 palavras de pesquisa na caixa abaixo e clique em "pesquisar".
 Observe que a função de pesquisa
 irá procurar automaticamente por todas as palavras.
 Páginas contendo menos palavras não irão aparecer na lista de
 resultado.

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

component/uri-templates.html

 Navegação

 		
 índice

 		YARetornoBoleto »

URI templates

The $uri passed to one of the client’s request creational methods or the base URL of a client can utilize URI
templates. Guzzle supports the entire URI templates RFC [http://tools.ietf.org/html/rfc6570]. URI templates add a
special syntax to URIs that replace template place holders with user defined variables.

Every request created by a Guzzle HTTP client passes through a URI template so that URI template expressions are
automatically expanded:

$client = new Guzzle\Http\Client('https://example.com/', array('a' => 'hi'));
$request = $client->get('/{a}');

Because of URI template expansion, the URL of the above request will become https://example.com/hi. Notice that
the template was expanded using configuration variables of the client. You can pass in custom URI template variables
by passing the URI of your request as an array where the first index of the array is the URI template and the second
index of the array are template variables that are merged into the client’s configuration variables.

$request = $client->get(array('/test{?a,b}', array('b' => 'there')));

The URL for this request will become https://test.com?a=hi&b=there. URI templates aren’t limited to just simple
variable replacements; URI templates can provide an enormous amount of flexibility when creating request URIs.

$request = $client->get(array('http://example.com{+path}{/segments*}{?query,data*}', array(
 'path' => '/foo/bar',
 'segments' => array('one', 'two'),
 'query' => 'test',
 'data' => array(
 'more' => 'value'
)
)));

The resulting URL would become http://example.com/foo/bar/one/two?query=test&more=value.

By default, URI template expressions are enclosed in an opening and closing brace (e.g. {var}). If you are working
with a web service that actually uses braces (e.g. Solr), then you can specify a custom regular expression to use to
match URI template expressions.

$client->getUriTemplate()->setRegex('/\<\$(.+)\>/');
$client->get('/<$a>');

You can learn about all of the different features of URI templates by reading the
URI templates RFC [http://tools.ietf.org/html/rfc6570].

 © Copyright 2014, Italo Lelis de Vietro.
 Criado usando Sphinx 1.3.4.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

